Renormalization Group in Quantum Mechanics
نویسندگان
چکیده
We establish the renormalization group equation for the running action in the context of a one quantum particle system. This equation is deduced by integrating each fourier mode after the other in the path integral formalism. It is free of the well known pathologies which appear in quantum field theory due to the sharp cutoff. We show that for an arbitrary background path the usual local form of the action is not preserved by the flow. To cure this problem we consider a more general action than usual which is stable by the renormalization group flow. It allows us to obtain a new consistent renormalization group equation for the action.
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملStochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings
The exact or Wilson renormalization group equations can be formulated as a functional Fokker-Planck equation in the infinite-dimensional configuration space of a field theory, suggesting a stochastic process in the space of couplings. Indeed, the ordinary renormalization group differential equations can be supplemented with noise, making them into stochastic Langevin equations. Furthermore, if ...
متن کاملThe Renormalization Group method for simple operator problems in quantum mechanics
A simple backreaction problem in quantum mechanics, the full quantum anharmonic oscillator, and quantum parametric resonance are studied using Renormalization Group techniques for global asymptotic analysis. In this short note this technique is adapted for the first time to operator problems.
متن کاملRenormalization Group at finite temperature in Quantum Mechanics
We establish the exact renormalization group equation for the potential of a one quantum particle system at finite and zero temperature. As an example we use it to compute the ground state energy of the anharmonic oscillator. We comment on an improvement of the Feynman Kleinert’s variational method by the renormalization group.
متن کامل